
  Texas Instruments 2024. You may copy, communicate and modify this material for non-commercial educational purposes 
provided all acknowledgements associated with this material are maintained. 

Authors:   Peter Fox 

 
 

 
 

Micro:bits = Macro Fun 
Peter Fox &  

Introduction 
The purpose of this workshop and handout is to provide accessible getting started resources, 

stimulating ideas (challenges) and experiences that highlight the opportunities afforded by 

the Micro:bit™. The first thing to consider when using Micro:bits is whether you want students 

to learn coding or simply engage in pre-prepared activities. This dilemma is similar to 

considerations pertaining to dynamic geometry: Do students learn by using the amazing array 

of available tools or through prepared interactive documents? In both cases, a wealth of 

resources exists to help you achieve success: 10 Minutes of Coding, Activity Downloads, 

YouTube, Google Groups and of course the wonderful Texas Instruments STEM team.  

A world of opportunities starts here. Are you ready? 

Micro:bit Sensors and Functionality (inbuilt):  

• 3 axis accelerometer 

• Ambient light 

• Temperature 

• 2 x push buttons 

• Microphone 

• Compass 

• Speaker 

• LED Display 

• General purpose input/output 

• Low level radio communications 

• Bluetooth 

• Expansion board connectivity 

You can attach the Micro:bit to an expansion board to introduce a world of new opportunities. Imagine flying a drone from 

your calculator and using ultrasonic sensors to access hand gestures to manoeuvre. What about attaching a GPS sensor 

to capture your location, create a treasure hunt or calculate speed.  

Equipment 

 

Calculator:  

• TI-Nspire CX II CAS, TI-Nspire CX II non-CAS or TI-84Plus CE Python 

• Micro:bit™ Python Module installed in Python Library (Other modules will be useful) 

• Make sure your calculator has the latest operating system. 

Micro:bit: 

• Version 2.2 – With latest HEX file from Texas instruments. (Drag and drop set up) 

• USB Mini to USB Micro – (Specific OTG cable required) 

Micro Parabolas 

Introduction 

In this activity you will learn how to capture data from the inbuilt accelerometer and use it to manipulate a graph. The 

activity is a novel way of exploring transformations. From a educational neuroscience perspective, novelty stimulates the 

dopamine system which is responsible for associative learning. Dopamine release is part of the brain’s reward system 

encouraging us to find out more. Put simply, the nature of the activity means that students are more likely to remember it. 

Caveat: The activity is not designed to help students understand transformations, other activities exist for this aspect. Once 

you have completed this activity, spend some time reflecting:  

“Is the coding in this activity a necessary component of the learning experience?”  



 

  Texas Instruments 2024. You may copy, communicate and modify this material for non-commercial educational purposes 
provided all acknowledgements associated with this material are maintained. 

Authors:   Peter Fox 

  

 
 

 
 

2  Micro:bit Activities  

 

Getting Started 

 Start a new document and insert a Python program.   

Name:  Micro 

 

 Import the Micro:bit and TI System modules.  

 Menu > More Modules > BBC micro:bit > from microbit import* 

This instruction means that the Micro:bit commands will be accessible from 

your Python program. 

 Menu > More Modules > TI System > from ti_system import* 

Some of the variables collected in the Python program need to be made 

accessible to other calculator applications.  

 A while loop that can be halted by the “esc” (escape) key is useful when 

exploring and particularly when loop conditions are yet to be determined.  

A pre-prepared instruction exists:  

 Menu > More Modules > TI System > while get_key()!=”esc” 

 

 

 

  

 

The Python programming tool on the calculator includes some handy navigation tools. The TAB key can be 

used to jump from one user input component to another within commands. If there are no more user input 

components, the TAB key will jump to the end of the line.   

  

 We’re ready to start capturing data from the accelerometer and displaying 

the results on screen. 

 Menu > More Modules > BBC micro:bit > Sensors > Accelerometer 

Select the x axis option: x=get_x() and store as: xa  

To see the values, use the print() command:  

 Menu > Built-ins > I/O > print() 

Put xa in the print command and run the program.  

 

 

Run the program and explore what happens when you tilt the Micro:bit in different directions. 

Note the range of values you can get through a full range of movement and through which axis.  



 

  Texas Instruments 2024. You may copy, communicate and modify this material for non-commercial educational purposes 
provided all acknowledgements associated with this material are maintained. 

Authors:   Peter Fox 

  

 
 

 
 

3  Micro:bit Activities  

Acting on Data 

 The values for the transformations need to vary between -10 and 10 in the x 

direction so a conversion factor needs to be incorporated. The conversion 

factor needs to be included in the loop, and preferably prior to the print(xa) 

statement. 

 xa = xa/*** [Replace the *** with your conversion factor.] 

 

 

 The ‘xa’ variable collected in Python needs to be transferred to the other 

applications in the calculator. This needs to occur within the “While” loop:  

  Menu > More Modules > TI System > store_value(“name”,value) 

 Name = Variable name in the calculator environments. 

 Value = Python variable name. 

In this example, ‘xa’ will be stored to ‘h’ and accessible from the calculator 

environments. Run your program. You won’t notice any difference; 

however, ‘h’ will now have a value which is critical for the next step!  
 

 You should now be in the Python Shell (Page 1.2). Insert a Graphs 

Application, (Page 1.3) and graph the following function:  

 𝑦 = (𝑥 − ℎ)2  

When you enter the function, you should notice that the ‘h’ is bold, signifying 

it has already been defined, courtesy of your “micro” program.  

 

 

 Navigate back to the Python Shell (Page 1.2) and press: 

  Ctrl + 4 

This is a short-cut to combine or group pages 1.2 and 1.3 onto one page. 

The two applications: Python Shell and Graphs should now be visible. We 

want to focus on the Graph application, press:  

 doc > Page Layout > Custom Split 

Move the divider to the left to make more of the Graph application visible.   

 We are now ready to run the Python program again. The calculator focus 

may be on the Graphs application, to shift focus press: Ctrl + Tab, this is 

similar to Alt + Tab in the Microsoft Windows™ environment.  

To run the program press:  

 Menu > Tools > Run 

Select the micro program and start moving the Micro:bit! When you’re done 

exploring, press “esc” to exit the loop and therefore end the program.  

 

 

Edit the conversion line in your program: xa = xa / …  so that it reads: xa = int(xa/ …) including your conversion 

factors and run the program again. What does the “int( )” command do to the numbers and graph movement? 



 

  Texas Instruments 2024. You may copy, communicate and modify this material for non-commercial educational purposes 
provided all acknowledgements associated with this material are maintained. 

Authors:   Peter Fox 

  

 
 

 
 

4  Micro:bit Activities  

Challenge 1: 

Edit your Python program. Use the same loop to capture data for acceleration in the Y direction. Apply a 
suitable scale factor and transfer this measurement to a calculator variable: ‘k’. Run your program to ensure k 
has a stored value, then change your graph to:  

 𝑦 = (𝑥 − ℎ)2 + 𝑘 

Challenge 2: 

Another transformation needs to be created. The ‘z’ axis accelerometer is a little harder to control. The other 
transformation is referred to as a dilation, typically referenced as “a”. Edit your Python program, and create a 
new loop so that the accelerometer can control the value of ‘a’ where ‘a’ is able to vary between -3 and +3 in 
increments of 0.25.  Redefine your equation as follows:  

 𝑦 = 𝑎(𝑥 − ℎ)2 + 𝑘 

Challenge 3: 

Another option is to reflect a function in the x or y axis. Write a program to reflect a function using the respective 
tilting of the Micro:bit. 

Challenge 4: 

The micro:bit can be used as a ‘plane’, write a program to graph the corresponding plane in the 3D graphing 
window. 
 

 
IDEAS! 

Calculus:   

 Imagine the Micro:bit is attached to a ruler using a rubber band and calibrated so that the measurements reflect 
the slope (gradient). Set the program up to capture the ‘slope’. The teacher moves their finger along a function 
and the students model the slope using their ruler. Students will now have a series of slope measurements they 
can graph, the derivative!  

Imaginary Dice:  

Imagine you are holding a cube/dice, each time you tilt the Mciro:bit the corresponding side of the cube or dice 
is displayed. Provide students with a net for the cube and get them to populate the net with the corresponding 
images. This challenge is made even harder if the images are no longer visible/accessible when the students 
attempt to populate the net! 

Write your own:   

Discuss and share ideas with a partner for other activities.   

 

  



 

  Texas Instruments 2024. You may copy, communicate and modify this material for non-commercial educational purposes 
provided all acknowledgements associated with this material are maintained. 

Authors:   Peter Fox 

  

 
 

 
 

5  Micro:bit Activities  

Micro Data Collection 

Introduction 

The Micro:bit has an built in thermistor which means it can measure temperature. In this activity you will learn how to 

capture temperature and time data and store that data in a list.  

Getting Started 

 Start a new document and insert a Python program.   

Name:  DataCollect 

 

 Three modules need to be imported for this program:  

 Menu > More Modules > BBC micro:bit > from microbit import* 

 Menu > More Modules > TI System > from ti_system import* 

 Menu > More Modules > time > from time import* 

The Micro:bit module is required for the onboard sensor, the TI-System is 

required to transfer data from the Python program to the calculator 

applications and the time is useful for capturing time stamps.  

 To access the calculator’s internal clock:   

  Menu > More Modules > Time > clock() 

The clock time needs to be stored in a variable: t1 

The program can then be set to sleep for 0.5 seconds.  

 Menu > More Modules > Time > sleep() 

  
 

 Collect another time and store the result in: t2 

The two times can be printed to the screen and the difference calculated. 

  

 

 

 

Run the program to see the values generated from the calculator’s internal clock.  

Try placing a print(t1) command before collecting t2 to gauge how long it takes to execute a print() command. 



 

  Texas Instruments 2024. You may copy, communicate and modify this material for non-commercial educational purposes 
provided all acknowledgements associated with this material are maintained. 

Authors:   Peter Fox 

  

 
 

 
 

6  Micro:bit Activities  

 The superfluous time commands and calculations can be removed leaving 

only the original time stamp: t1=clock() 

Two empty lists need to be established to record the data, one for the time 

and another for temperature. 

 time = [ ] 

 temp = [ ]  

 

 Ten data points will be collected.  

As we know the quantity of points, a “For” loop is the most appropriate 

structure. 

 Menu > Built-ins > Control > for index in range (start, stop): 

The loop counter will be ‘n’, starting at 0 and ending at 10.  

 

 Within the loop the temperature will be collected from the Micro:bit, the 

calculator clock time will be recorded, and both of these values added 

(appended) to their respective lists. 

 Menu > More Modules > BBC micro:bit > Sensors > …Temperature 

Store the temperature measurement at ‘t’.  

Capture the calculator’s clock time and store the result as t2.  

 

Ç The lists can now be updated (appended). Start with the temperature: temp 

 Menu > Built-ins > Lists > .append 

Add the temperature just collected (t) and repeat for the time list. 

Print the temperature to the calculator screen and add a sleep time (0.5). 

Run your program. To display the results at the end of the program type the 

variable names (or use the variable key) to access the values.  
 

 

 

Run the program to see temperature values. You can hold onto the Micro:bit to increase the temperature.  

Time readings can be ‘simplified’ by including the ‘round’ command:  time.append(round(t2-t1,2)) 

 

 The final step is to send the data across to the calculator. This step is done 

once the loop has finished. 

  Menu > More Modules > TI System > store_list(“name”,list) 

Transfer both the time and temperature (temp) lists and run the program. 

Once the program has finished, graph your data in the Data & Statistics 

application.  

 

  



 

  Texas Instruments 2024. You may copy, communicate and modify this material for non-commercial educational purposes 
provided all acknowledgements associated with this material are maintained. 

Authors:   Peter Fox 

  

 
 

 
 

7  Micro:bit Activities  

Micro-Communications 

Introduction 

The BBC Micro:bit™ has a built wireless functionality. In this activity you will learn how to send data from one calculator to 

another, wirelessly. Calculator 1 represents the data source (sender), calculator 2 is the receiver.  

Sender – Calculator 1 

 Start a new document and insert a Python program.   

Name:  Coms 

 

 Import the Micro:bit and TI System modules.  

 Menu > More Modules > BBC micro:bit > from microbit 

import* 

 

 

 By default, radio communications are turned off to save power, so we 

need to turn them on:  

 Menu > More Modules > BBC micro:bit > Radio > Setup > On() 

The next step is to configure the communication length, channel, 

power and group:  

 Menu > More Modules > BBC micro:bit > Radio > Setup >  

 config(… 

For now, we can leave the default configuration, it can be changed 

later. 

 

 We’re now ready to send some information to another device, that 

device can be another calculator or computer! In this example we will 

send a number:  

 Menu > More Modules > BBC micro:bit > Radio > Methods > 

… 

Enter a number for the ‘value’. The program is ready to run! Now we 

need a second device which will receive the data.  
 



 

  Texas Instruments 2024. You may copy, communicate and modify this material for non-commercial educational purposes 
provided all acknowledgements associated with this material are maintained. 

Authors:   Peter Fox 

  

 
 

 
 

8  Micro:bit Activities  

Receiver – Calculator 2 

 Start a new document and insert a Python program.   

Name:  Coms  

Import the Micro:bit and TI System modules.  

 Menu > More Modules > BBC micro:bit > from microbit 

import* 

  

 By default, radio communications are turned off to save power:  

 Menu > More Modules > BBC micro:bit > Radio > Setup > On() 

Configure the communication length, channel, power and group:  

 Menu > More Modules > BBC micro:bit > Radio > Setup >  

 config(… 

These settings need to match the sender! Leave these as default for 

now. 
 

 Receiving data is slightly more complicated than sending, because we 

don’t know when the data will be pushed out into the world, therefore 

the receiving device needs to be constantly listening. 

We start by assigning a variable to store the information. The variable 

should not contain any information. 

 data = None 

Make sure to capitalise the N, Python is case sEnSiTiVe!  

 A while loop can be used to receive and monitor radio 

communications, no signal means the data variable equals “None”. 

 Menu > Built-ins > Control > While 

Set the condition:  data == None 

The only command in the body of the loop is to ‘receive’ a value:  

 Menu > More Modules > BBC micro:bit > Radio > Manage > 

 receive  
 

 The final step is to display the data once it has been received, note 

that this only needs to be done once the data has actually been 

received.  

 Menu > Built-ins > I/O > print() 

Insert the ‘data’ into the print command. The program is ready to run. 

The receiving program MUST be run before the sending program! 

Once the receiving program is running on Calculator 2, run then 

sending program on calculator 1. 

 

 

  



 

  Texas Instruments 2024. You may copy, communicate and modify this material for non-commercial educational purposes 
provided all acknowledgements associated with this material are maintained. 

Authors:   Peter Fox 

  

 
 

 
 

9  Micro:bit Activities  

Challenge 1: 

Two-way communication means information moves backwards and forwards between devices. On calculator 1 

add a data = … , while loop …, radio receive … and print instructions immediately after the send command. Once 

the calculator has sent its information (number), it will wait to receive a response. 

On calculator 2, immediately after the print(data) command, add in some send instructions. Think about the timing 

of the send/receive communications.   

Challenge 2: 

Change the send/receive instructions on each device so that ‘text’ 

messages can be sent from one device to another. Note that the length 

of the text is set to “32” in the configuration command, so the message 

text cannot exceed 32 characters.  

For an added bonus, try using the display text command:   

 

Challenge 3: 

Explore what happens when the signal strength (power) is reduced in the configuration command. How far does 

the signal travel for power = 6 compared with power = 1.  

 

Challenge 4: 

When several people are using the same ‘channel’, you may pick up someone else’s messages. There are many 

ways this can be prevented, the simplest way is for each pair to select the same channel, but a different channel 

than everyone else. Another way is to ‘encrypt’ the message. From a simplistic perspective, working with 

numbers, the encryption could be as simple as the sender adding on the multiple of some number (n) to the value 

they want to send. The receiver can then use modular arithmetic (n) to remove the unwanted quantity.  

Example:   

• Sender and receiver agree on “1021” as the encryption value. (modular arithmetic).  

• Sender wants to send the number 37, so they send: 1058.  

• Receiver then uses:  print(data%1021)  

• Any other person receiving the information that is not privy to the encryption value will receive a 

‘meaningless’ value. This concept can be extended with multiple communications. 

 

 
IDEAS! 

 
Treasure Hunt:   

Imagine multiple calculators are set up across multiple spaces/rooms. Each of these calculators is constantly 

sending out a signal. Student calculators are in constant ‘receive’ mode. Each student is provided with a clue that 

helps them find a specific calculator. “IF” the student arrives at the correct location, the signal they receive will 

match the stored value for that clue and immediately display the next clue! Design a treasure hunt!  


